More on an exactly solvable position-dependent mass Schrödinger equation in two dimensions: Algebraic approach and extensions to three dimensions

نویسنده

  • C. Quesne
چکیده

An exactly solvable position-dependent mass Schrödinger equation in two dimensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of recent theories describing superintegrable two-dimensional systems with integrals of motion that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra approach is used together with a realization in terms of deformed parafermionic oscillator operators. In this process, the importance of supplementing algebraic considerations with a proper treatment of boundary conditions for selecting physical wavefunctions is stressed. Some new results for matrix elements are derived. Finally, the two-dimensional model is extended to two integrable and exactly solvable (but not superintegrable) models in three dimensions, depicting a particle in a semi-infinite parallelepipedal or cylindrical channel, respectively. PACS: 03.65.-w

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New approach to (quasi)-exactly solvable Schrödinger equations with a position-dependent effective mass

By using the point canonical transformation approach in a manner distinct from previous ones, we generate some new exactly solvable or quasi-exactly solvable potentials for the one-dimensional Schrödinger equation with a position-dependent effective mass. In the latter case, SUSYQM techniques provide us with some additional new potentials. PACS: 02.30.Gp, 03.65.Ge

متن کامل

Parameter determination in a parabolic inverse problem in general dimensions

It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...

متن کامل

توسعه یک روش عددی حجم محدود برای ارزیابی عملکرد هیدرودینامیکی سازه های دریایی

Development of a compatible computational fluid dynamics procedure to investigate rigid and fixed/free coastal and offshore structures hydrodynamics in a time-dependent one/two phase flow of viscous incompressible fluids is presented. Differential governing equations are discretised using finite volume approach based on a colocated arrangement. The conservation equations for mass and momentum a...

متن کامل

Abrupt termination of a quantum channel and exactly solvable position-dependent mass models in three dimensions

We consider a particle with a position-dependent mass, moving in a threedimensional semi-infinite parallelepipedal or cylindrical channel under the influence of some hyperbolic potential. We show that the lack of uniformity in the environment generates an infinite number of bound states. PACS: 03.65.-w

متن کامل

Explicit representations of Pollaczek polynomials corresponding to an exactly solvable discretisation of hydrogen radial Schrödinger equation

Abstract. We consider an exactly solvable discretisation of the radial Schrödinger equation of the hydrogen atom with l = 0. We first examine direct solutions of the finite difference equation and remark that the solutions can be analytically continued entire functions. A recursive expression for the coefficients in the solution is obtained. The next step is to identify the related three-term r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006